CHAPTER 6
Paleoenvironment—Holocene Deposits from Shemya Island

Arkady B. Savinetsky, Nina K. Kiseleva, and Bulat F. Khassanov
(with contributions from Douglas Causey, Tom Corbett, Dixie West,
Christine Lefewre, and Debra Corbett)

Introduction

Holocene climate and vegetation changes in the western Aleutians have been little studied, and few publications are devoted to the topic (Black 1976a; Heusser 1978; Thorson and Hamilton 1986). With little knowledge of variation in the Western Aleutian environment, it is difficult to define its impact on mammal and bird populations or to understand clearly the anthropogenic effects on mid- to late-Holocene ecosystems. Currently, it is unclear how climatic changes affected the history of occupation and lifeways of ancient Aleuts. Although Black (1976a) discounted the influence of climatic changes on Aleut expansion, there are insufficient radiocarbon dates for ancient settlements and Holocene climatic changes to support such a conclusion.

Materials

In 1994 Russian historical ecologists with the WAAPP (Savinetsky, Kisseleva, and Khassanov) studied Holocene deposits at two locations on Shemya Island: Alcan Creek and Shemya 9 (Figure 6-1). They briefly examined another peat deposit located at McDonald Point on the east end of Shemya in 1999.

Alcan Creek

The Alcan Creek peat bog is located in the northwestern part of Shemya, 750 m from the western seashore and about 35 m above sea level. A 2.5 m high profile (Figure 6-2) is exposed along some 60 m of the north bank of Alcan Creek, which flows west to Alcan Harbor down a gently sloping valley. The original extent of the peat bog is unknown because military construction destroyed deposits south of Alcan Creek and in the headwater area. Currently, the base of the peat bog lies 1–1.5 m above the modern stream.

Shemya 9

The basal remnants of an ancient Aleut settlement, ATU-066, are located on the top of a hill approximately 100 m inland from the south coast of Shemya Island. Military construction has removed the upper occupation levels and partially exposed the underlying stratigraphy on three sides. The top of the hill is about 18 m above sea level and is covered by dense meadow-type vegetation, predominantly Elymus arenarius, Heracleum lanatum, and Senecio pseudo-arnica.

Shemya 9, a soil profile underlying ATU-066 exposed 3.7 m of stratified deposits overlying bedrock, including 30 cm of cultural debris near the top of the column. Cultural materials
Figure 6-1: Location of soil profiles with surficial geology and archaeological sites.
included abundant sea urchin and other shell, fish and bird bones, and bone and stone artifacts. The Shemya 9 deposit is measured downward from the ground surface, and includes the cultural deposits on top of the hill (Figure 6-3).

McDonald Point

In 1999, researchers excavated a third profile at the eastern end of Shemya Island locally known as McDonald Point. Previous military quarrying operations exposed the sediments in profile. Deposits consist of nearly 4 m of interlayered peat and windblown sand resting on bedrock (Figure 6-4). A single radiocarbon date indicates soil deposition began more than 9,500 years ago (9547 ± 128 BP, IEMAE-1261). Because the McDonald Point profile confirms the findings from Alcan Creek and Shemya 9 it is not discussed in detail.
Figure 6-3: Profile of Shemya 9 deposit.
Methods

Soil samples 5–10 cm thick were collected from the entire profile at all three deposits. Detailed description of soil color, texture and organic inclusions allowed the definition of zones which were then analyzed for information on age, rate of soil formation, temperature and precipitation. The techniques used are briefly described here. For more information on these analyses see Dinesman et al. (1999), P’yavchenko (1963), Tyurennov (1976), and Savinetsky et al. (2004).

Organic and inorganic fractions of each sample were separated for analyses. The organic remains were used for carbon dating the deposits, and for determining relative temperature and precipitation rates. Grain size and source analysis of the mineral fractions were used to determine sedimentation rates and hydrologic conditions.

In order to date the various horizons and determine rates of soil deposition, radiocarbon samples were extracted from six layers at Alcan Creek and four layers at Shemya 9. After standard pretreatment of each sample with hot KOH, non-soluble fractions of peat were extracted, screened to remove particles coarser than 0.5 mm diameter, and submitted for radiocarbon dating (Table 6-1). The resulting dates allow us to estimate rates of soil accumulation (Figure 6-5).

Climatic changes were evaluated by examining the layer-by-layer changes in the mineral fraction and relative decomposition of peat. In cases of good drainage, these changes in peat are determined by the temporal dynamics of warming and the saturation of the deposits (Dinesman et al. 1999). To determine the degree of change in precipitation over the time of formation of the entire layer, we used the allolithic mineral content of the layer. The inorganic mineral content of pure peat cannot exceed 15% (P’yavchenko 1963), and all proportions that

<table>
<thead>
<tr>
<th>Depth of Horizon (cm)</th>
<th>Material Dated</th>
<th>Laboratory Number</th>
<th>Radiocarbon Age (years before present)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcan Creek</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20–30</td>
<td>Plant remains</td>
<td>IEMAE-1199</td>
<td>562 ± 83</td>
</tr>
<tr>
<td>80–90</td>
<td>Plant remains</td>
<td>IEMAE-1201</td>
<td>3221 ± 75</td>
</tr>
<tr>
<td>130–140</td>
<td>Plant remains</td>
<td>IEMAE-1299</td>
<td>4396 ± 198</td>
</tr>
<tr>
<td>200–210</td>
<td>Plant remains</td>
<td>IEMAE-1202 & 1204</td>
<td>7562 ± 104</td>
</tr>
<tr>
<td>250–260</td>
<td>Plant remains</td>
<td>IEMAE-1203</td>
<td>7924 ± 320</td>
</tr>
<tr>
<td>Shemya 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30–35</td>
<td>Collagen from fish bones</td>
<td>IEMAE-1176</td>
<td>2244 ± 182</td>
</tr>
<tr>
<td>155–165</td>
<td>Plant remains</td>
<td>IEMAE-1198</td>
<td>2791 ± 126</td>
</tr>
<tr>
<td>185–193</td>
<td>Plant remains</td>
<td>IEMAE-1171</td>
<td>3715 ± 106</td>
</tr>
<tr>
<td>237–250</td>
<td>Plant remains</td>
<td>IEMAE-1173</td>
<td>5000 ± 230</td>
</tr>
</tbody>
</table>
Figure 6-5: Rate of soil accumulation at Alcan Creek and Shemya 9.

Exceed this value are caused by the introduction of mineral particles into the accumulating peat through the runoff of atmospheric precipitation from adjoining slopes or during flooding. Aeolian deposition is also a possible source, but its contribution to relative error in these analyses is minimized by screening which will leave only the finest grain sizes, which are most likely deposited by atmospheric or surface water (Tyuremnnov 1976). No tephra layers were found in any peat deposits here, although they often quickly weather to clay.

To estimate the change in the summer temperature regimes, we used layer-by-layer changes in the degree of peat decomposition. The degree of decomposition is determined by the percentage content of "unstructured" matrix, containing small particles of inorganic remains along with the humic matter. Aerobic microorganisms, which actively function only in the upper, peat-forming layer, play the primary role in the decomposition of organic remains. Microorganism activity in the peat layer is only possible with suitable warmth and sufficient moisture, and is suppressed by low temperatures, drying or waterlogging. If the moisture content of peat does not exceed its capacity, the deciding factor influencing decomposition is temperature (Prosohora 1988). After being covered with a developing layer of peat, the degree
of decomposition remains practically unchanged (Tyuremnov 1976). Protracted waterlogging of a well-drained bog like this site is unlikely, so that changes in the degree of peat decomposition will reflect changes in the temperature regime during the warm parts of the year (Causey et al. 2005, Savinetkii et al. 2004).

We also conducted granulometric (grain-size) analyses in order to determine the mode of transportation of the mineral fraction in the peat, and to recognize hydrological conditions governing sedimentation (Table 6-2). Minerals were identified in order to determine their source. The final analysis performed on the soil samples was a standard macrofossil analysis (Grosse-Brauckmann 1986) to characterize ancient floral communities.

Results

Alcan Creek

Alcan Creek radiocarbon dates show that deposition began nearly 8,000 years ago. During the first 400–500 years, the rate of deposition was rapid, with soils accumulating at 1.8 mm/year (Table 6-2). Thereafter, and through the middle of the 15th century AD, sediment accumulated in the peat bog at much slower rates of 0.22–0.42 mm/year.

The Alcan Creek profile can be divided into three zones:

- The lowest, Zone 1, 250–264 cm, represents a paleosol formed on bedrock beginning about 8000 years BP. The fine sorting of the mineral fraction in the buried silt, its lamellar structure, and the presence of plant remains indicate that this early soil developed during periodic flooding, or within standing or slow-moving water. The water carried fine silt that periodically covered the plant cover, enriching the soil and allowing the development of plant growth.

- After 8,000 years ago (7924 ± 320, Table 6-1), soil-formation processes abruptly changed. Clayey sediments permeated with plant remains, and interspersed with sandy layers gradually covered the lowest paleosol over a period of 4,700 years (7990–3220 BP). Zone 2 is a 150 cm soil deposit between profile interval 260–90 cm which accumulated in a marsh or wet floodplain. The graph of the deposit (Figure 6-6) suggests the deposition rate was variable. During the first stage, 7900–7650 BP (260–200 cm), the accumulation was relatively rapid: 1.8 mm/year. Between 7650 and 4400 BP (200–130 cm), it diminished to 0.21 mm/year. From 4400 to 3220 BP (130–90 cm), it increased to 0.42 mm/year.

- The upper portion of the deposit, Zone 3, 90–20 cm is composed of pure peat formed during a 2,600-year period (3220–560 BP) at a rate of 0.22 mm/year. Absence of an elevated mineral fraction in this layer confirms that good drainage existed during this period and that sediment introduction from surface erosion and stream overflow were negligible. At the same time, the area remained sufficiently wet for peat formation to occur. The upper peaty-sod horizon was formed during the last 560 years.

Morphological analyses of sediments, in both the field and laboratory, revealed that the Alcan Creek deposit formed under different conditions of moisture availability over time. Zone 2, the mineralized part of the deposit between 260–90 cm in depth, is uniform fine sand, without a single pebble, and no obvious sedimentary structure (Table 6-2). It represents diluvial deposition from flooding in the immediate area. A mineral content of 62–77% confirms this, and indicates that for 3,400 years stable atmospheric precipitation was higher than it is now.

Zone 3, 90–0 cm deep, is a true peat bog. The highest moisture occurred during the first half of peat formation, i.e., 7,990–4,560 years ago. Around 4,500 years ago the introduction of mineral grains into the sediments stopped and the rate of peat formation did not change.
Table 6-2: Granulometric composition of the mineral fraction of the Alcan Creek deposit.

<table>
<thead>
<tr>
<th>Elevation above Stream Bed</th>
<th>Depth (cm)</th>
<th>Age (RCYBP)</th>
<th>Mineral Content (%)</th>
<th>Coarse Sand 1-0.5 mm</th>
<th>Medium Sand 0.5-0.25 mm</th>
<th>Fine Sand 0.25-0.1 mm</th>
<th>Very Fine Sand 0.1-0.05 mm</th>
<th>Silt 0.05-0.01 mm</th>
<th>Clay 0.01 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>10-20</td>
<td>562 ± 83</td>
<td>11.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>3 m</td>
<td>80-90</td>
<td>3221 ± 75</td>
<td>9.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>2 m</td>
<td>130-140</td>
<td>4396 ± 198</td>
<td>20.0</td>
<td>—</td>
<td>6.8</td>
<td>25.0</td>
<td>43.2</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>1 m</td>
<td>160-170</td>
<td>61.9</td>
<td>—</td>
<td>6.8</td>
<td>41.9</td>
<td>44.6</td>
<td>7.5</td>
<td>23.6</td>
<td>100</td>
</tr>
<tr>
<td>1 m</td>
<td>200-210</td>
<td>7532 ± 168; 7727 ± 133</td>
<td>61.0</td>
<td>—</td>
<td>—</td>
<td>34.5</td>
<td>44.6</td>
<td>7.5</td>
<td>28.4</td>
</tr>
<tr>
<td>1 m</td>
<td>250-264</td>
<td>7924 ± 320</td>
<td>68.4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6.2</td>
<td>10.7</td>
</tr>
<tr>
<td>> 264</td>
<td>100</td>
<td>14</td>
<td>23.5</td>
<td>—</td>
<td>37.0</td>
<td>6.4</td>
<td>—</td>
<td>5.3</td>
<td>13.2</td>
</tr>
</tbody>
</table>
This suggests atmospheric precipitation dropped and then stabilized. The bog received moisture from subsoil waters, spring melt, and summer surface waters. This corresponds also with the gradual rise of sea level to the modern mark about 5,000–4,000 years ago (Black 1976b; Kaplin 1982; Kaplin et al. 1991).

The rate of peat decomposition varied over the 8,000 years of deposition but averaged 36.1%. With increased decomposition during warmer periods and decreased decomposition during cooler periods, we have inferred several long-term variations in temperature (Figure 6–4). Comparatively warm periods are recognized at 8000–7700 BP, 6750–6250 BP, 5750–4750 BP, 4100–3850 BP, and 3600–3350 BP, and from 1750 BP to present, with the maximum temperature occurring at 6,750–6,250 years ago.

Comparatively colder periods are noted between 7700–6750 BP, 6250–5750 BP, 4750–4100 BP, 3850–3600 BP, and 3350–1750 BP, with the minimum temperature occurring between 2,600 and 2,150 years ago. The general duration of both warm (3,500 years) and cool (3,900 years) periods was approximately equal.
Macrofossil analysis agrees with the division of the deposit into the upper Zone 3, and lower Zone 2 levels described above. In general, Zone 2 is a fibrous peat consisting primarily of the roots and other underground organs of sedges (Carex spp.). A small amount of fragmentary Equisetum sp. epidermal tissue, seeds of rushes (Juncus sp.), fruits of sedges (Carex sp.), and leaves of mosses, including Sphagnum, were found as well. Roots and leaves of grasses (Gramineae) were also identified in small quantities.

In contrast, roots and other underground parts of grasses (Gramineae) were abundant in Zone 3. Roots and bark of shrubs (Empetrum nigrum and Vaccinium sp.) were also common. Thus, the upper peat of this deposit differs markedly from the lower by the presence of shrubby vegetation and grasses, and by the absence of Sphagnum.

Heussler (1990) detected similar changes in the botanical composition of peat during palynological analysis of a peat deposit on Attu Island. The lower part of the Attu section was formed from 6700 to 5200 years BP. The pollen spectrum of that section was dominated by sedges (Cyperaceae) along with small amounts of pollen of other taxa such as grasses (Gramineae), Umbelliferae, ferns, and Sphagnum. In contrast, the spectrum of the upper part was dominated by pollen of grasses and Empetrum nigrum.

These changes in the botanical composition of peat on Shemya and Attu islands represents the change from sedge and sedge-grass meadow communities—with Sphagnum and forbs typical of wetter localities—to heath with a predominance of dwarf shrubs (Empetrum nigrum, Vaccinium sp.) and grasses. Currently, these heaths can be found in different places, from hilltops to depressions, but always on well-developed organic soils. This replacement of a sedge-meadow-type community by heath with dwarf shrubs and grasses mirrors the changes in precipitation.

Shemya 9

Four radiocarbon dates (Table 6-1) from Shemya 9 indicate that this deposit began forming before 5000 BP and continued for at least 3,234 years. This latest date of 2244 BP on fish bone is subject to a carbon reservoir correction of 434 years giving an effective date of 1810 BP. According to the graph of deposition rates (Figure 6-3), the interval between 237–155 cm was formed over a period of 2,200 years, between 5000–2790 BP, at a rate of 0.34 mm/year. The rate of accumulation subsequently increased to 2.1 mm/year for between 2790–2240 BP.

Based on morphological features, the Shemya 9 profile can be divided into five zones:

- **Zone 1** (370–237 cm), formed before 5,000 years ago, and is represented by a meter of light-yellow clay with inclusions of pebbles and blue clay. This is covered by 20 cm of brown loam and capped by a dense, black, humic paleosol at 250–237 cm.

- **Zone 2**, between 237 and 155 cm, is a complex of clearly delineated sandy-clayey sediments deposited between 5000–2790 BP, at an average rate of 0.34 mm/year. Dark brown sandy layers with rusty stains, are interleaved with dark, plant-rich layers that appear to be buried humic paleosols. The most obvious of these are located at depths 210–185 cm and 176–155 cm. These two layers appear to be buried soil horizons.

- **Zone 3**, at 155–102 cm, consists of sandy lenses complexly interleaved with clayey layers. This interval resembles the layer previously described, but was deposited more rapidly at a rate of 2.0 mm/year for approximately 250 years (2790–2550 BP).

- **Zone 4**, 102–60 cm, is a homogeneous sandy soil with a buried humic horizon. Numerous modern plant roots penetrated this layer, making direct radiocarbon dating impossible for this interval.

- **The uppermost stratum**, Zone 5, 60–10 cm, is composed of sandy sediments. Aleut cultural remains dominate the lower 30 cm of the profile. This layer formed over
a very short time, between 2350 and 2240 BP, at about 2.7 mm/year. Military construction removed the upper part of this cultural layer. The topmost modern rootzone has been deposited over the last 60 years.

Basement rocks of the Lower Series underlie the Shemya 9 deposit (Coats 1956; Gates et al. 1956). Based on radiocarbon dates, Zone 2 sediments, above 237 cm, were formed after 5000 years BP. There are no rounded pebbles or remains of sea or freshwater organisms. This suggests it was not formed by marine processes. It is not of diluvial-proluvial genesis because of its well-defined stratification and sorting. Similar deposits are known for many of the Aleutian Islands (Black 1980; Coats 1956; Gates et al. 1956).

The granulometric and mineralogical analyses of the sediments (Table 6-3) confirm the deposit is aeolian, laid down by winds winnowing away the finer-grained fractions of beach deposits. This process is still operating and is readily observed. The entire deposit consists primarily of coarse- and fine-grained sand. The mineral composition of the sand resembles that of the parent material of the island; angular grains of quartz (10 to 18%); feldspar (10 to 25%); amphiboles (5 to 12%); and pyroxene (5 to 25%). Angular grains indicate a short distance between the source area and deposition.

Conclusions

Analysis of the three soil profiles show that favorable conditions for soil formation and accumulation have existed on Shemya Island for 9,500 years, since the early Holocene. The following preliminary conclusions can be made:

- The period 7900–4500 BP was characterized by atmospheric precipitation which greatly exceeded that of modern times. Between 4500 and 3200 years BP, there was a period of general reduction of atmospheric precipitation. During the last 2,500 years (3200–560 BP), atmospheric precipitation stabilized at lower modern levels.
- Cycles of temperature change were observed, but the change did not result in any disastrous effects on the Aleutian ecosystem. Comparatively warm periods are noted between 8000–7700 BP, 6750–6250 BP, 5750–4750 BP, 4100–3850 BP, 3600–3350 BP, and from 1750 BP to present, with the maximum warming period

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Age (RCYBP)</th>
<th>Coarse Sand 1-0.5 mm</th>
<th>Medium Sand 0.5-0.25 mm</th>
<th>Fine Sand 0.25-0.1 mm</th>
<th>Very Fine Sand 0.1-0.05</th>
<th>Silt 0.05-0.01 mm</th>
<th>Clay 0.01 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-35</td>
<td>2244 ± 182</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>63-82</td>
<td>1.3</td>
<td>65</td>
<td>16.2</td>
<td>23</td>
<td>2.3</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>107-118</td>
<td>6.2</td>
<td>62.5</td>
<td>20</td>
<td>3.8</td>
<td>2.7</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>139-155</td>
<td>2.5</td>
<td>71.3</td>
<td>10</td>
<td>10.5</td>
<td>2.8</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>155-165</td>
<td>2791 ± 126</td>
<td>7.5</td>
<td>63.8</td>
<td>12.5</td>
<td>10</td>
<td>2.2</td>
<td>4</td>
</tr>
<tr>
<td>176-185</td>
<td>1.2</td>
<td>48.8</td>
<td>22.5</td>
<td>21.7</td>
<td>3.1</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>193-200</td>
<td>3715 ± 106</td>
<td>18.7</td>
<td>25.1</td>
<td>20</td>
<td>23.5</td>
<td>8.2</td>
<td>4.5</td>
</tr>
<tr>
<td>200-217</td>
<td>11.2</td>
<td>30</td>
<td>25</td>
<td>23.8</td>
<td>6.8</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>227-237</td>
<td>7.5</td>
<td>11.2</td>
<td>21.3</td>
<td>47</td>
<td>8.1</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>237-250</td>
<td>5000 ± 230</td>
<td>13.8</td>
<td>11.2</td>
<td>17.5</td>
<td>44.2</td>
<td>7.3</td>
<td>6</td>
</tr>
<tr>
<td>250-270</td>
<td>13.8</td>
<td>20</td>
<td>47.5</td>
<td>12.5</td>
<td>4.2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
occurring between 6750 and 6250 BP. The longest warming trends occurred between 5750 and 4850 BP and from 1750 BP to the present.

- Comparatively colder periods are noted between 7700–6750 BP, 6250–5750 BP, 4750–4100 BP, 3850–3600 BP and 3350–1750 BP, with the minimum temperature occurring 2600–2150 BP. The longest summer cooling trends occurred between 7700 and 6750 BP and between 3350 and 1750 BP.

- During the second half of the middle Holocene (5000–1800 BP) winds deposited fine-grained material from beaches on island slopes near the sea.

Eustatic sea level rise began at the end of the Pleistocene and reached its modern level in tectonically stable areas about 4,000 years ago (Black 1980; Kaplin 1982; Kaplin et al. 1991). However, the Aleutian Ridge is a very active seismic area. According to Black (1980), the relative changes of sea level during the Holocene in the Aleutian Islands were not simultaneous because of the different direction of tectonic movements of the North American and North-Pacific plates. According to R. Black (Thorson and Hamilton 1986), sea level stabilized at modern levels in the eastern Aleutians 11,000 years ago and in the west about 5000 BP. Therefore, the beginning of the aeolian deposition coincides with time of stabilization of sea level in the Near Islands.

It remains difficult to determine how climatic and geomorphological factors influenced ancient Aleut culture. No radiocarbon-dated and identified osteological materials have been available for such interpretations. However, for the first time, it is possible to use results from C-14 dating of basal horizons from different human settlements in the Near Islands. Out of eight known dates (Table 6–4), seven fall during or near the end of the longest-lasting cool interval 3350–1750 years BP, and all dates fall within comparatively dry periods.

If these dated sites represent the earliest movements of ancient Aleuts into the Near Islands, it appears the migrations occurred during a relatively dry and cool period of the Late Holocene. According to Sorkina (1963), climatic cooling the North Pacific may have occurred during periods of weakening cyclonic activity—characterized by weakening of the wind. Wind velocity was probably critical to Aleuts when they crossed the widest interisland oceanic passages in the western Aleutians. Future data on the long-term ecological shifts of this region should provide answers to other questions about prehistoric Aleut migrations and adaptations.

<table>
<thead>
<tr>
<th>Site</th>
<th>Conventional Date BP</th>
<th>Material</th>
<th>Reservoir Corrected Age BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agattu (ATU-001) (M-12a)</td>
<td>2500 ± 300</td>
<td>Wood</td>
<td>2500 ± 300</td>
</tr>
<tr>
<td>Agattu (ATU-001) (M-12b)</td>
<td>2630 ± 300</td>
<td>Wood</td>
<td>2630 ± 300</td>
</tr>
<tr>
<td>Shemya (ATU-003) (Beta-40421)</td>
<td>2030 ± 70</td>
<td>Charcoal</td>
<td>2030 ± 70</td>
</tr>
<tr>
<td>Shemya (ATU-061) (Beta-39104)</td>
<td>3325 ± 60</td>
<td>Bone</td>
<td>2470 ± 72</td>
</tr>
<tr>
<td>Shemya (ATU-061) (IEMAE 1175)</td>
<td>3096 ± 135</td>
<td>Fish bone</td>
<td>2240 ± 140</td>
</tr>
<tr>
<td>Shemya (ATU-062) (Beta-40423)</td>
<td>1845 ± 90</td>
<td>Bone</td>
<td>990 ± 100</td>
</tr>
<tr>
<td>Anchitka 31 (RAT-031) (I-4735)</td>
<td>2550 ± 95</td>
<td>Bone</td>
<td>1695 ± 105</td>
</tr>
<tr>
<td>Anchitka 36 (RAT-036) (I-4738)</td>
<td>2254 ± 95</td>
<td>Charcoal</td>
<td>2245 ± 95</td>
</tr>
</tbody>
</table>

1. Appendix G, assumed marine reservoir correction 855 ± 40 radiocarbon years (see Chapter 15).
REFERENCES

Aamodt, Mike

Aigner, Jean S.

Aigner, Jean S. and Douglas Veitre

Alverson, Dayton L.

Amundsen, C. C.

Andreev, A. I.

Armstrong, Robert H.

Arthukhin, Yuri B.

Austin, O. L.

Bailey, Edgar P.

Baker, Ralph C.

Balme, Jane

Bank, H. Theodore P.

Beaudet, Paul Roland

Befu, Harumi and Chester Chard

Belcher, William R.

Bent, Arthur C.

Bergsland, Knut
1957 Aleut Dialects of Atka and Atta. Transactions of the American Philosophical Society 49(3).

Bergsland, Knut and Moses L. Dirks

Berkh, Vasili N.

Black, Lydia T.
1982 Aleut Art, Aleutian/Pribilof Islands Association, Anchorage, Alaska.

Black, Robert F.

Bleed, Peter, Carl Fall, Ann Bleed and Akira Matsui

Boas, Franz

Bouchet, Françoise, Christine Lefévre, Dixie West and Debra Corbett
Bowman, Sheridan

Boyd, Thomas Murry

Brooks, James W.

Burgner, R. L. and Roy E. Nakatani

Byrd, G. Vernon, John L. Trapp and C. Fred Zeilemaker

Cameron, Christopher P. and D. P. Stone

Camp, Kristin
1993 Observations of Short-tailed Albatross (Diomedea albatrus) in the Bering Sea. Colonial Waterbirds 16(2):221–221.

Carboneras, Carles

Casteel, Richard W.

Causey, Douglas, Debra G. Corbett, Christine Lefevre, Dixie L. West, Arkady B. Savinetsky, Nina K. Kiseleva, and Bulat F. Khassanov

Chagnon, Napoleon

Chard, Chester

Chereb, Yves and Natasha Klages

Clark, Austin H.

Clark, Fred
Clec, John Haila

Coats, Robert Roy

Cohen, Stan

Collins, Henry B.
1937 *Archaeology of St. Lawrence Island, Alaska*. Smithsonian Miscellaneous Collections Volume 96, Number 1. Smithsonian Institution, Washington, D.C.

Collins, Henry B., Austin H. Clark and Egbert H. Walker
1945 *The Aleutian Islands: Their People and Natural History (with Keys for the Identification of the Birds and Plants)*. War Background Studies 21. Smithsonian Institution, Washington, D.C.

Coltrane, Joan Breuner, Geoffrey M. Hayes and Dennis O’Rourke, H.

Corbett, Debra

Corbett, Debra, Christine Lefèvre, Thomas J. Corbett, Dixie West and Douglas Siegel-Causey

Corbett, Debra, Dixie West and Christine Lefèvre

Cox, Dook C. and George Pararas-Carayannis

Cramer, Joseph L.

Crane, H. R.

Crockford, Susan J., S. Gay Frederick and Rebecca Wigen
Dall, William H.

Day, Richard H., Brian E. Lawhead, T. J. Early and Elaine B. Rhode

Dayton, Paul K.

De Laguna, Fredericka

Denniston, Glenda B.

Desautels, Roger J., Albert J. McCurdy, James D. Flynn and Robert R. Ellis

Desse, Jean and Nathalie Desse-Berset

Dessen, Dominique

Dillon, J. T.

Dinesman, Lev G., Nina K. Kiseleva, Arkady B. Savinetsky and Bulat F. Khassanov
1999 *Secular Dynamics of Coastal Zone Ecosystems of the Northeastern Chukchi Peninsula*. Mo Vince Verlag, Tübingen, Germany.

Dirks, William Jr.
1998 Aleut Elder. Personal interview with Alice Petrivelli, Aleut Elder.

Dirks, William Sr.
1988 Aleut Elder. Taped Interview with Alice Petrivelli, Aleut Elder.

Divin, Vasilli A.
1979 *Rosskaja Tikhookeanskaia Epopeia (Russian Pacific Ocean...)* Khabarovsk Knizhnoe Izdatelstvo.

Donning, Daryl, Jim Thomason, and Debra Corbett

Doroff, Angela M.

Dumond, Don E.
1987a *Prehistoric human occupation of Southwestern Alaska: a study of resource distribution and site location*, University of Oregon Anthropological Papers No. 36.

Dumond, Don E. and Dennis G. Griffin

Dyson, George

Elliott, Henry W.

Emison, William B., Francis S. L. Williamson and Clayton M. White

EnvirospHERE

Estes, James A.

Estes, James A. and David O. Duggins

Estes, James A. and John F. Palmisano

Etter, Michael A.
2002 The Effects of Human Hunting on Northern Fur Seal (Callorhinus ursinus) Migration and Breeding Distribution in the Late Holocene. PhD, University of Washington.

Evans, Susan Toby

Favoreto, Felix A., J. Dodimead and K. Nasu

Fay, Francis Hollis

Fernandez, Patricia, David J. Anderson, Paul R. Sievert and Kathryn P. Huyvaert

FitzPatrick, E. A.

Flannery, Kent

Ford, James A.
Forssell, Douglas J. and Christopher Ambroz

Fournelle, John H., Bruce D. Marsh and James D. Myers

Friedmann, Herbert

Frohlich, Bruno and David Kopjansk

Fujisawa, K.
1967 Aboral, Diomedea albairras. Toko Shoùn, Tokyo, Japan.

Gabrielson, Ira N. and Frederick C. Lincoln

Gard, Leonard Jr

Garfield, Brian

Gates, Olcott, Howard A. Powers and Ray E. Wilcox

Geist, Eric L., Jonathan R. Childs and David W. Scholl

Gerlach, S. Craig and Edwin S. Hall

Gibson, Daniel D.

Gibson, Daniel D., and G. Vernon Byrd

Goldstein, David M. and Katherine V. Dilling

Golodoff, Innocenti
1966 The Last Days of Attu Village as told to Karl W. Kenyon. Alaska Sportsman December:8–9.

Gray, H. D.

Green, Stanton W. and Stephen M. Perlman
Grosse-Brauckmann, J.

Guggenheim, P.

Haggarty, James C., Christopher B. Wooley, John M. Erlandson and Aron Crowell

Hanson, Diane K. and David P. Staley

Harbo, Rick M.

Harrison, Craig S.

Hart, J. L.

Hasegawa, Hiroshi
1978 Recent Observations of Short-tailed Albatross Diomedea albatrus at Torishima. Miscellaneous Report, Yamashina Institute of Ornithology.
1984 [Short-tailed Albatross—the White-Winged Wanderer Over the Sea]. Heibon Sha Co, Tokyo, Japan.

Hasegawa, Hiroshi and Anthony R. DeGange

Hattori, T.

Hayes, M. Geoffrey

Hein, M. K.

Heusser, Calvin J.

Hiatt, Betty
Hildebrandt, William R.

Hildebrandt, William R. and Terry L. Jones

Hoffecker, John F. and Mandy Whorton

Holland, Kathryn M.

Hrdlička, Aleš

Hultén, Eric

Hurt, Wesley R.

Hutchison, G. Evelyn

Hyrenbach, K. David, Patricia Fernandez and David J. Anderson
2002 Oceanographic Habitats of Two Sympatric North Pacific Albatrosses During the Breeding Season. Marine Ecology Progress Series 233:283–301.

Jochelson, Waldemar

Jochim, Michael

Johannesson, B.

Johnson, Jean Marie

Johnson, Lewis

Johnson, L. Lewis and Clive Bonsall

Jones, Norman S. and Joanna M. Kain
Jones, Robert D.

Kaplin, P. A.
1982 Osnovnye Etapy Razvitija Beregovoi Zony v Golotsene [Main Stages of Development of Coastal Area in the Holocene]. In Geographic Investigation of the Quaternary Period, pp. 87–96. Moscow State University, Moscow, Russia.

Kaplin, P. A., O. K. Leont’ev, S. A. Luk’yanova and L. G. Nikiforov
1991 Berega [Shores]. Mysl’, Moscow, Russia.

Kellogg, Charles Edwin and Iver J. Nygard

Kenyon, Karl W.

Kessel, Brina and Daniel D. Gibson

Ketchen, K. S.

Khlebnikov, Kyrill T.
1827 Travel Notes Aboard the Brig Kiakhta Along the Islands of the Andreanov, Bering, Near Rat Island District by the Manager of the Novoarkhangelsk Office. Khlebnikov Shur Collection, Rare Books, University of Alaska Fairbanks, Rasmuson Library, Fairbanks, Alaska.

King, Judith E.

Kirch, Patrick Vinton

Kirtland, John C. and David F. Coffin

Kling, Edward
1995 Manuscript Relating to the 18th Engineers in the Aleutian Islands, 1943-1944. Manuscript on file at the Arctic Studies Center, Smithsonian Institution, Washington, D.C.

Knecht, Richard A. and Richard S. Davis

Knecht, Richard A., Richard S. Davis and Gary A. Carver

Konar, Brenda
Kowalik, Zygmunt

Krause, A.

Lantis, Margaret

Laughlin, William S.

Laughlin, William S. and Gordon H. Marsh

Leatherwood, Stephen, Randall R. Reeves, William F. Perrin and William E. Evans

Lefèvre, Christine, Debra Corbett and Dixie West

Lefèvre, Christine, Debra Corbett, Dixie West and Douglas Siegel-Causey

Lefèvre, Christine and Douglas Siegel-Causey

Lefèvre, Christine, Dixie West and Debra Corbett

LeGrow, Jane C.

Len'kov, V. D., G. L. Sil'an'ev and A. K. Stan'kovich

Lensink, C. J.

Liapunova, Rosa G.

Loring, Stephen

Loring, Stephen and Douglas W. Veltri

Loughlin, Thomas R. and Kiyotaka Ohtani

Love, G.

Luttrell, W. Mark

Lyman, R. Lee

Makarova, Raisa

Mammerickx, J.

Marlow, Michael S., David W. Scholl, Edwin C. Buffington and Tau Rho Alpha

Martinson, Charles R.

Masterson, James R. and Helen Brower

Matsuoka, H. and et al.

McAllister, W. Bruce and Felix Favorite
McCARTNEY, Allen P.

McCARTNEY, Allen P. and Christy G. Turner II

McCARTNEY, Allen P. and Douglas W. Veltri

McDERMONT, Duane K. and Kenneth H. Morgan

MCKENZIE, John, Robert L. Schafer, and Elizabeth Farber

McLAIN, Robert B.
1958 Capture of the Short-tailed Albatross on the Coast of Southern California. The Auk 15:267.

MECKLENBURG, Catherine W., T. Anthony Mecklenburg and Lyman K. Thorsteinson

MEECHAN, Joseph P. and Mark A. Krom

MERRITT, Melvin L.

MERRITT, Melvin L. and R. Glen Fuller

MILLER, Loyal

MIRAGLIA, Rita A.

MOCHANOV, Yuri A.
Momose, Kei, F. Sato, A. Kajita and K. Saitou

Morison, Samuel Eliot

Moss, Madonna L.

Motyka, Roman J., S. A. Liss, C. J. Nye and M. A. Moorman

Murdoch, John

Murie, Olaus J.

National Marine Fisheries Service

National Park Service

Nelson, Edward William

Netsvetov, Iakov

Nevzoroff, Max
1998 Aleut Elder. Interview with Alice Petrivelli, Aleut Elder.

Niebauer, Henry J., Nicholas A. Bond, Lev P. Yakunin and Vladimir V. Plotnikov

National Oceanographic and Atmospheric Administration (NOAA)

Nee-Nygaard, Nanna
O’Clair, Charles E.

Oдум, Eugene P.

Ogi, H. and Y. Hattori

Ohya, Haruo

O’Leary, Matthew

Orchard, Trevor J.

Oshorn, Alan J.

Overland, James E.

Overland, James E. and Carol H. Pease

Owen, Bruce D.

Owen, Jennifer F. and John R. Merrick

Paine, Robert T. and Robert L. Vadas

Pallas, Peter S.
1769 *Specilegia Zoologica*. Academy of Science, St. Petersburg, Russia.

Palmaso, John F. and James A. Estes

Pautska, Bruce C.
Petrivelli, Alice

Petroff, Ivan

Pierce, Richard A.

Pinart, Alphonse L.

Porter, Robert P.

Powers, W. Roger

Prokopceuff, Daniel

Prosorova, M. I.

Pyavchenko, N. I.

Quast, Jay C. and E. L. Hall

Reed, Ronald K. and Phyllis J. Stabeno

Reimer, Paula J. and Ron W. Reimer

Reimer, Paula J. and 27 others
2009 IntCal09 and Marine09 Radiocarbon Age Calibration Curves, 0–50,000 Years Cal BP. Radiocarbon 51:1111-1150.

Reynolds, Georgeanne

Rice, Dale W. and Karl W. Kenyon
Riedman, Marianne L. and James A. Estes

Rojo, Alfonso L.

Rose, Lloyd E.

Rowe, Charlotte

Sanger, Gerald A.

Santaela, Luis and Andrés M. Sada

Sauer, Martin
1802 An Account of a Geographical and Astronomical Expedition to the Northern Part of Russia. T. Cadell, London.

Savinetsky, Arkady B., Nina K. Kiseleva, and Bulat F. Khassanov

Sayles, Myron A., Knut Aagaard and Lawrence K. Coachman

Scammon, Charles

Schafer, J. P.

Scholl, David W., Edwin C. Buffington and Michael S. Marlow

Schumacher, James D. and Phyliss J. Stabeno

Sekora, Palmer C.

Sekora, Palmer C., G. Vernon Byrd and Daniel D. Gibson

Shapnikov, Anfesia and Raymond L. Hudson

Sherwood, Morgan B.
Shuntov, Vyacheslav P.

Siegel-Causey, Douglas, Debra Corbett, Christine Lefèvre and Stephen Loring

Siegel-Causey, Douglas, Christine Lefèvre and Debra Corbett

Siegel-Causey, Douglas, Christine Lefèvre and Arkady B. Savinetsky

Simenstad, Charles A., John S. Isakson and Roy E. Nakatani

Snigaroff, Clara
1998 Aleut Elder. Interview with Alice Petrivelli, Aleut Elder.

Snow, Henry James

Sorkina, Anna I.
1963 Tipy atmosfernoi tsirkuliacii i sviazannykh s nej vetovych kolos na severnoi chast"i Tikhogo okeana (Atmospheric Circulation and the Related Wind Fields over the North Pacific). Gidrometeorologicheskoe Izdatel'stvo, Moscow.

Southon, J. R., D. E. Nelson and J. S. Vogel

Sowles, A. L., Scott A. Hatch and C. J. Leasink

Spaulding, Albert C.

Spence, William

Staben, Phyllis J. and Ronald K. Reed

Staben, Phyllis J., James D. Schumacher and Kiyotaka Ohtani

Stallcup, Rich
1990 Ocean Birds of the Nearshore Pacific. Point Reyes Bird Observatory, Point Reyes, California.

Stanford, Dennis J.

Stanyukovich, A. K. and P. Yu. Chernovitov
Steffan, Amy F. and Patrick G. Saltonstall

Stejneger, Leonard

Steller, Georg Wilhelm

Stewart, Henry

Stewart, Hilary

Stiiver, Minze and Thomas F. Brazunas

Stiiver, Minze, G.W. Pearson, and Tom Brazunas

Stiiver, Minze and Paula J. Reimer

Suttles, Wayne

Swaffield, Edward
1964 Letter in the Archives. Los Angeles Department of Anthropology.

Swanson, Henry
1982 *The Unknown Islands*. Cuttlefish VI, Unalaska City School District.

Swinhoe, Robert
1863 The Ornithology of Formosa, or Taiwan. *Ibis* 5:277–435.

Sykes, Lynn R.

Taber, John J., Selena Billington and E. Robert Engdahl

Talbot, Sandra L.
Talbot, Stephen S. and Sandra L. Talbot

Taylor, R. H. and J. E. Brooks

Thomson, G. and T. Staudt

Thorson, Robert M. and Thomas D. Hamilton

Tickell, W. L. N.

Tikhnenev, Petr A.

Trapp, John L.

Turner, Lucien M.

Tyuremnoy, S. N.

U.S. Bureau of Indian Affairs (USBIA)

USDA NRCS

USGS

Ulrich, H.
Valdez, Richard A., William T. Helm and John M. Neuhold

Varjola, Pirjo, Julie P. Averkieva and Rosa G. Liapunova

Veltre, Douglas W.

Veniaminov, Ivan

Vinniakov, Andrei Y.

Vita-Finzi, Claudio and Eric S. Higgs

von Kotzebue, Otto
1821 A Voyage of Discovery into the South Sea and Beering’s Straits, for the Purpose of Exploring a North-East Passage, Under Taken in the Years 1815-1818, at the Expense of His Highness . . . Count Romanzoff, in the Ship Ruick, Under the Command of the Lieutenant in the Russian Imperial Navy, Otto von Kotzebue. Longman, Hurst, Rees, Orme, and Brown, London.

Walker, Egberg H.
1945 Plants of the Aleutian Islands. Smithsonian Institution, Washington, D. C.

Watanabe, Hitoshi

WCATWC

West, Dixie, Debra Corbett and Christine Lefèvre
West, Dixie, Michael Crawford and Arkady B. Savinetsky

West, Dixie, Christine Lefèvre, Debra Corbett and Arkady B. Savinetsky

West, Dixie, Christine Lefèvre, Debra Corbett and Susan Crockford

West, Phebe

Weyer, Edward M.

Wheeler, A.

White, Clayton M., Francis S. L. Williamson and William B. Emison

Wildenbuer, Thomas K.

Wilimovsky, Norman J.

Wilimovsky, Norman J., Alex E. Peden and J. L. Peppar

Willey, Gordon R.

Williams, Jeff

Wilmerding, Elizabeth G.

Woodbury, Anthony C.

Worrall, Dan M.

Wright, Parasovia
Yesner, David R.

Yesner, David R. and Jean S. Aigner

Zeillemaker, C. Fred, and John L. Trapp

Zimmerly, David W.
THE PEOPLE AT THE END OF THE WORLD:
The Western Aleutians Project and the Archaeology of Shemya Island

Edited by
Debra Corbett
Dixie West
Christine Lefèvre

AURORA
Alaska Anthropological Association Monograph Series – VIII
2010